The roots of polynomial $ p(x) $ are:
$$ \begin{aligned}x_1 &= 0\\[1 em]x_2 &= 1.1754\\[1 em]x_3 &= -0.4254 \end{aligned} $$Step 1:
Factor out $ \color{blue}{ -x }$ from $ -4x^3+3x^2+2x $ and solve two separate equations:
$$ \begin{aligned} -4x^3+3x^2+2x & = 0\\[1 em] \color{blue}{ -x }\cdot ( 4x^2-3x-2 ) & = 0 \\[1 em] \color{blue}{ -x = 0} ~~ \text{or} ~~ 4x^2-3x-2 & = 0 \end{aligned} $$One solution is $ \color{blue}{ x = 0 } $. Use second equation to find the remaining roots.
Step 2:
The solutions of $ 4x^2-3x-2 = 0 $ are: $ x = \dfrac{ 3 }{ 8 }-\dfrac{\sqrt{ 41 }}{ 8 } ~ \text{and} ~ x = \dfrac{ 3 }{ 8 }+\dfrac{\sqrt{ 41 }}{ 8 }$.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this quadratic equation.