Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ x^4+3x^3-5x^2-3x+4 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = 1 & x_2 = -1 & x_3 = -4 & x_4 = 1 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = x^4+3x^3-5x^2-3x+4 } $, so:
$$ \text{Y inercept} = p(0) = 4 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( x^4+3x^3-5x^2-3x+4 \right) = \lim_{x \to -\infty} x^4 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( x^4+3x^3-5x^2-3x+4 \right) = \lim_{x \to \infty} x^4 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 4x^3+9x^2-10x-3 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 1 & x_2 = -3 & x_3 = -\dfrac{ 1 }{ 4 } \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 1 } \Rightarrow p\left(1\right) = \color{orangered}{ 0 }\\[1 em] \text{for } ~ x & = \color{blue}{ -3 } \Rightarrow p\left(-3\right) = \color{orangered}{ -32 }\\[1 em] \text{for } ~ x & = \color{blue}{ -\frac{ 1 }{ 4 } } \Rightarrow p\left(-\frac{ 1 }{ 4 }\right) = \color{orangered}{ \frac{ 1125 }{ 256 } }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 1, 0 \right) & \left( -3, -32 \right) & \left( -\dfrac{ 1 }{ 4 }, \dfrac{ 1125 }{ 256 } \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 12x^2+18x-10 $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = 0.4315 & x_2 = -1.9315 \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0.4315 } \Rightarrow p\left(0.4315\right) = \color{orangered}{ 2.0505 }\\[1 em] \text{for } ~ x & = \color{blue}{ -1.9315 } \Rightarrow p\left(-1.9315\right) = \color{orangered}{ -16.5574 }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 0.4315, 2.0505 \right) & \left( -1.9315, -16.5574 \right)\end{matrix} $$