Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ x^4+2x^3-21x^2-22x+40 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = 1 & x_2 = 4 & x_3 = -2 & x_4 = -5 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = x^4+2x^3-21x^2-22x+40 } $, so:
$$ \text{Y inercept} = p(0) = 40 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( x^4+2x^3-21x^2-22x+40 \right) = \lim_{x \to -\infty} x^4 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( x^4+2x^3-21x^2-22x+40 \right) = \lim_{x \to \infty} x^4 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 4x^3+6x^2-42x-22 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = -\dfrac{ 1 }{ 2 } & x_2 = 2.8541 & x_3 = -3.8541 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -\frac{ 1 }{ 2 } } \Rightarrow p\left(-\frac{ 1 }{ 2 }\right) = \color{orangered}{ \frac{ 729 }{ 16 } }\\[1 em] \text{for } ~ x & = \color{blue}{ 2.8541 } \Rightarrow p\left(2.8541\right) = \color{orangered}{ -81 }\\[1 em] \text{for } ~ x & = \color{blue}{ -3.8541 } \Rightarrow p\left(-3.8541\right) = \color{orangered}{ -81 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( -\dfrac{ 1 }{ 2 }, \dfrac{ 729 }{ 16 } \right) & \left( 2.8541, -81 \right) & \left( -3.8541, -81 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 12x^2+12x-42 $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = 1.4365 & x_2 = -2.4365 \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 1.4365 } \Rightarrow p\left(1.4365\right) = \color{orangered}{ -24.75 }\\[1 em] \text{for } ~ x & = \color{blue}{ -2.4365 } \Rightarrow p\left(-2.4365\right) = \color{orangered}{ -24.75 }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 1.4365, -24.75 \right) & \left( -2.4365, -24.75 \right)\end{matrix} $$