Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ x^4-x^3-5x^2-x-6 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = 3 & x_2 = -2 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = x^4-x^3-5x^2-x-6 } $, so:
$$ \text{Y inercept} = p(0) = -6 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( x^4-x^3-5x^2-x-6 \right) = \lim_{x \to -\infty} x^4 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( x^4-x^3-5x^2-x-6 \right) = \lim_{x \to \infty} x^4 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 4x^3-3x^2-10x-1 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = -0.1037 & x_2 = -1.1837 & x_3 = 2.0373 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -0.1037 } \Rightarrow p\left(-0.1037\right) = \color{orangered}{ -5.9488 }\\[1 em] \text{for } ~ x & = \color{blue}{ -1.1837 } \Rightarrow p\left(-1.1837\right) = \color{orangered}{ -8.2003 }\\[1 em] \text{for } ~ x & = \color{blue}{ 2.0373 } \Rightarrow p\left(2.0373\right) = \color{orangered}{ -20.0188 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( -0.1037, -5.9488 \right) & \left( -1.1837, -8.2003 \right) & \left( 2.0373, -20.0188 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 12x^2-6x-10 $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = 1.1965 & x_2 = -0.6965 \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 1.1965 } \Rightarrow p\left(1.1965\right) = \color{orangered}{ -14.0178 }\\[1 em] \text{for } ~ x & = \color{blue}{ -0.6965 } \Rightarrow p\left(-0.6965\right) = \color{orangered}{ -7.1558 }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 1.1965, -14.0178 \right) & \left( -0.6965, -7.1558 \right)\end{matrix} $$