Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ x^4-7x^3-37x^2-47x-18 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = -1 & x_2 = -2 & x_3 = 10.831 & x_4 = -0.831 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = x^4-7x^3-37x^2-47x-18 } $, so:
$$ \text{Y inercept} = p(0) = -18 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( x^4-7x^3-37x^2-47x-18 \right) = \lim_{x \to -\infty} x^4 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( x^4-7x^3-37x^2-47x-18 \right) = \lim_{x \to \infty} x^4 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 4x^3-21x^2-74x-47 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = -0.9125 & x_2 = -1.6485 & x_3 = 7.811 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -0.9125 } \Rightarrow p\left(-0.9125\right) = \color{orangered}{ 0.0911 }\\[1 em] \text{for } ~ x & = \color{blue}{ -1.6485 } \Rightarrow p\left(-1.6485\right) = \color{orangered}{ -2.3256 }\\[1 em] \text{for } ~ x & = \color{blue}{ 7.811 } \Rightarrow p\left(7.811\right) = \color{orangered}{ -2256.0584 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( -0.9125, 0.0911 \right) & \left( -1.6485, -2.3256 \right) & \left( 7.811, -2256.0584 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 12x^2-42x-74 $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = 4.788 & x_2 = -1.288 \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 4.788 } \Rightarrow p\left(4.788\right) = \color{orangered}{ -1334.038 }\\[1 em] \text{for } ~ x & = \color{blue}{ -1.288 } \Rightarrow p\left(-1.288\right) = \color{orangered}{ -1.1356 }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 4.788, -1334.038 \right) & \left( -1.288, -1.1356 \right)\end{matrix} $$