Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ x^3+4x^2-x-7 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = 1.2534 & x_2 = -1.48 & x_3 = -3.7734 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = x^3+4x^2-x-7 } $, so:
$$ \text{Y inercept} = p(0) = -7 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( x^3+4x^2-x-7 \right) = \lim_{x \to -\infty} x^3 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( x^3+4x^2-x-7 \right) = \lim_{x \to \infty} x^3 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 3x^2+8x-1 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 0.1196 & x_2 = -2.7863 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0.1196 } \Rightarrow p\left(0.1196\right) = \color{orangered}{ -7.0607 }\\[1 em] \text{for } ~ x & = \color{blue}{ -2.7863 } \Rightarrow p\left(-2.7863\right) = \color{orangered}{ 5.2088 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 0.1196, -7.0607 \right) & \left( -2.7863, 5.2088 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 6x+8 $.
The zero of second derivative is
$$ \begin{matrix}x = -\dfrac{ 4 }{ 3 } \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -\frac{ 4 }{ 3 } } \Rightarrow p\left(-\frac{ 4 }{ 3 }\right) = \color{orangered}{ -\frac{ 25 }{ 27 } }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( -\dfrac{ 4 }{ 3 }, -\dfrac{ 25 }{ 27 } \right)\end{matrix} $$