Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 9x^6+x^5+9x^4+2x^3+7 = 0 } $
Since above equation has no solutions we conclude that
polynomial has no x-intecepts.
(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 9x^6+x^5+9x^4+2x^3+7 } $, so:
$$ \text{Y inercept} = p(0) = 7 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 9x^6+x^5+9x^4+2x^3+7 \right) = \lim_{x \to -\infty} 9x^6 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( 9x^6+x^5+9x^4+2x^3+7 \right) = \lim_{x \to \infty} 9x^6 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 54x^5+5x^4+36x^3+6x^2 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 0 & x_2 = -0.1638 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0 } \Rightarrow p\left(0\right) = \color{orangered}{ 7 }\\[1 em] \text{for } ~ x & = \color{blue}{ -0.1638 } \Rightarrow p\left(-0.1638\right) = \color{orangered}{ 6.9977 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 0, 7 \right) & \left( -0.1638, 6.9977 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 270x^4+20x^3+108x^2+12x $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = 0 & x_2 = -0.11 \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0 } \Rightarrow p\left(0\right) = \color{orangered}{ 7 }\\[1 em] \text{for } ~ x & = \color{blue}{ -0.11 } \Rightarrow p\left(-0.11\right) = \color{orangered}{ 6.9987 }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 0, 7 \right) & \left( -0.11, 6.9987 \right)\end{matrix} $$