Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 6x^7-2x^6+4x^5+2x^4+7x^3-9x^2+x+3 = 0 } $
The solution of this equation is:
$$ \begin{matrix}x = -0.4542 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 6x^7-2x^6+4x^5+2x^4+7x^3-9x^2+x+3 } $, so:
$$ \text{Y inercept} = p(0) = 3 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 6x^7-2x^6+4x^5+2x^4+7x^3-9x^2+x+3 \right) = \lim_{x \to -\infty} 6x^7 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( 6x^7-2x^6+4x^5+2x^4+7x^3-9x^2+x+3 \right) = \lim_{x \to \infty} 6x^7 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 42x^6-12x^5+20x^4+8x^3+21x^2-18x+1 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 0.0598 & x_2 = 0.5091 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0.0598 } \Rightarrow p\left(0.0598\right) = \color{orangered}{ 3.0291 }\\[1 em] \text{for } ~ x & = \color{blue}{ 0.5091 } \Rightarrow p\left(0.5091\right) = \color{orangered}{ 2.3896 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 0.0598, 3.0291 \right) & \left( 0.5091, 2.3896 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 252x^5-60x^4+80x^3+24x^2+42x-18 $.
The zero of second derivative is
$$ \begin{matrix}x = 0.3115 \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0.3115 } \Rightarrow p\left(0.3115\right) = \color{orangered}{ 2.6803 }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( 0.3115, 2.6803 \right)\end{matrix} $$