Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 6x^7-2x^6+4x^5+2x^4-6x^3+9x^2+x+3 = 0 } $
The solution of this equation is:
$$ \begin{matrix}x = -1.1258 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 6x^7-2x^6+4x^5+2x^4-6x^3+9x^2+x+3 } $, so:
$$ \text{Y inercept} = p(0) = 3 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 6x^7-2x^6+4x^5+2x^4-6x^3+9x^2+x+3 \right) = \lim_{x \to -\infty} 6x^7 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( 6x^7-2x^6+4x^5+2x^4-6x^3+9x^2+x+3 \right) = \lim_{x \to \infty} 6x^7 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 42x^6-12x^5+20x^4+8x^3-18x^2+18x+1 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = -0.0527 & x_2 = -0.8548 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -0.0527 } \Rightarrow p\left(-0.0527\right) = \color{orangered}{ 2.9732 }\\[1 em] \text{for } ~ x & = \color{blue}{ -0.8548 } \Rightarrow p\left(-0.8548\right) = \color{orangered}{ 8.9302 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( -0.0527, 2.9732 \right) & \left( -0.8548, 8.9302 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 252x^5-60x^4+80x^3+24x^2-36x+18 $.
The zero of second derivative is
$$ \begin{matrix}x = -0.6144 \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -0.6144 } \Rightarrow p\left(-0.6144\right) = \color{orangered}{ 6.804 }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( -0.6144, 6.804 \right)\end{matrix} $$