Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 6x^3+7x^2-63x+20 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = -4 & x_2 = \dfrac{ 5 }{ 2 } & x_3 = \dfrac{ 1 }{ 3 } \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 6x^3+7x^2-63x+20 } $, so:
$$ \text{Y inercept} = p(0) = 20 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 6x^3+7x^2-63x+20 \right) = \lim_{x \to -\infty} 6x^3 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( 6x^3+7x^2-63x+20 \right) = \lim_{x \to \infty} 6x^3 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 18x^2+14x-63 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 1.5219 & x_2 = -2.2997 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 1.5219 } \Rightarrow p\left(1.5219\right) = \color{orangered}{ -38.5165 }\\[1 em] \text{for } ~ x & = \color{blue}{ -2.2997 } \Rightarrow p\left(-2.2997\right) = \color{orangered}{ 128.928 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 1.5219, -38.5165 \right) & \left( -2.2997, 128.928 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 36x+14 $.
The zero of second derivative is
$$ \begin{matrix}x = -\dfrac{ 7 }{ 18 } \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -\frac{ 7 }{ 18 } } \Rightarrow p\left(-\frac{ 7 }{ 18 }\right) = \color{orangered}{ \frac{ 10985 }{ 243 } }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( -\dfrac{ 7 }{ 18 }, \dfrac{ 10985 }{ 243 } \right)\end{matrix} $$