Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 5x^7+4x^6+5x^5+2x^4+7x^3+12x^2-6x+11 = 0 } $
The solution of this equation is:
$$ \begin{matrix}x = -1.2906 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 5x^7+4x^6+5x^5+2x^4+7x^3+12x^2-6x+11 } $, so:
$$ \text{Y inercept} = p(0) = 11 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 5x^7+4x^6+5x^5+2x^4+7x^3+12x^2-6x+11 \right) = \lim_{x \to -\infty} 5x^7 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( 5x^7+4x^6+5x^5+2x^4+7x^3+12x^2-6x+11 \right) = \lim_{x \to \infty} 5x^7 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 35x^6+24x^5+25x^4+8x^3+21x^2+24x-6 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 0.2071 & x_2 = -0.8561 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0.2071 } \Rightarrow p\left(0.2071\right) = \color{orangered}{ 10.3402 }\\[1 em] \text{for } ~ x & = \color{blue}{ -0.8561 } \Rightarrow p\left(-0.8561\right) = \color{orangered}{ 19.204 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 0.2071, 10.3402 \right) & \left( -0.8561, 19.204 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 210x^5+120x^4+100x^3+24x^2+42x+24 $.
The zero of second derivative is
$$ \begin{matrix}x = -0.4725 \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -0.4725 } \Rightarrow p\left(-0.4725\right) = \color{orangered}{ 15.7758 }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( -0.4725, 15.7758 \right)\end{matrix} $$