Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 5x^6-2x^5+7x-4 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = 0.5647 & x_2 = -1.0931 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 5x^6-2x^5+7x-4 } $, so:
$$ \text{Y inercept} = p(0) = -4 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 5x^6-2x^5+7x-4 \right) = \lim_{x \to -\infty} 5x^6 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( 5x^6-2x^5+7x-4 \right) = \lim_{x \to \infty} 5x^6 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning point, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 30x^5-10x^4+7 $$The x coordinate of the turning point is located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x = -0.6909 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinate, substitute the above value into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -0.6909 } \Rightarrow p\left(-0.6909\right) = \color{orangered}{ -7.9776 }\end{aligned} $$So the turning point is:
$$ \begin{matrix} \left( -0.6909, -7.9776 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 150x^4-40x^3 $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = 0 & x_2 = \dfrac{ 4 }{ 15 } \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0 } \Rightarrow p\left(0\right) = \color{orangered}{ -4 }\\[1 em] \text{for } ~ x & = \color{blue}{ \frac{ 4 }{ 15 } } \Rightarrow p\left(\frac{ 4 }{ 15 }\right) = \color{orangered}{ -\frac{ 4862048 }{ 2278125 } }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 0, -4 \right) & \left( \dfrac{ 4 }{ 15 }, -\dfrac{ 4862048 }{ 2278125 } \right)\end{matrix} $$