Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 3x^4-10x^2+45 = 0 } $
Since above equation has no solutions we conclude that
polynomial has no x-intecepts.
(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 3x^4-10x^2+45 } $, so:
$$ \text{Y inercept} = p(0) = 45 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 3x^4-10x^2+45 \right) = \lim_{x \to -\infty} 3x^4 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( 3x^4-10x^2+45 \right) = \lim_{x \to \infty} 3x^4 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 12x^3-20x $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 0 & x_2 = \dfrac{\sqrt{ 15 }}{ 3 } & x_3 = - \dfrac{\sqrt{ 15 }}{ 3 } \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0 } \Rightarrow p\left(0\right) = \color{orangered}{ 45 }\\[1 em] \text{for } ~ x & = \color{blue}{ \frac{\sqrt{ 15 }}{ 3 } } \Rightarrow p\left(\frac{\sqrt{ 15 }}{ 3 }\right) = \color{orangered}{ \frac{ 110 }{ 3 } }\\[1 em] \text{for } ~ x & = \color{blue}{ - \frac{\sqrt{ 15 }}{ 3 } } \Rightarrow p\left(- \frac{\sqrt{ 15 }}{ 3 }\right) = \color{orangered}{ \frac{ 110 }{ 3 } }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 0, 45 \right) & \left( \dfrac{\sqrt{ 15 }}{ 3 }, \dfrac{ 110 }{ 3 } \right) & \left( - \dfrac{\sqrt{ 15 }}{ 3 }, \dfrac{ 110 }{ 3 } \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 36x^2-20 $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = \dfrac{\sqrt{ 5 }}{ 3 } & x_2 = - \dfrac{\sqrt{ 5 }}{ 3 } \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ \frac{\sqrt{ 5 }}{ 3 } } \Rightarrow p\left(\frac{\sqrt{ 5 }}{ 3 }\right) = \color{orangered}{ \frac{ 1090 }{ 27 } }\\[1 em] \text{for } ~ x & = \color{blue}{ - \frac{\sqrt{ 5 }}{ 3 } } \Rightarrow p\left(- \frac{\sqrt{ 5 }}{ 3 }\right) = \color{orangered}{ \frac{ 1090 }{ 27 } }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( \dfrac{\sqrt{ 5 }}{ 3 }, \dfrac{ 1090 }{ 27 } \right) & \left( - \dfrac{\sqrt{ 5 }}{ 3 }, \dfrac{ 1090 }{ 27 } \right)\end{matrix} $$