Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 3x^3+5x^2-8x-4 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = -0.4181 & x_2 = 1.2674 & x_3 = -2.5159 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 3x^3+5x^2-8x-4 } $, so:
$$ \text{Y inercept} = p(0) = -4 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 3x^3+5x^2-8x-4 \right) = \lim_{x \to -\infty} 3x^3 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( 3x^3+5x^2-8x-4 \right) = \lim_{x \to \infty} 3x^3 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 9x^2+10x-8 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 0.5388 & x_2 = -1.6499 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0.5388 } \Rightarrow p\left(0.5388\right) = \color{orangered}{ -6.3896 }\\[1 em] \text{for } ~ x & = \color{blue}{ -1.6499 } \Rightarrow p\left(-1.6499\right) = \color{orangered}{ 9.3361 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 0.5388, -6.3896 \right) & \left( -1.6499, 9.3361 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 18x+10 $.
The zero of second derivative is
$$ \begin{matrix}x = -\dfrac{ 5 }{ 9 } \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -\frac{ 5 }{ 9 } } \Rightarrow p\left(-\frac{ 5 }{ 9 }\right) = \color{orangered}{ \frac{ 358 }{ 243 } }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( -\dfrac{ 5 }{ 9 }, \dfrac{ 358 }{ 243 } \right)\end{matrix} $$