Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 3x^3+2x^2-3x-2 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = 1 & x_2 = -1 & x_3 = -\dfrac{ 2 }{ 3 } \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 3x^3+2x^2-3x-2 } $, so:
$$ \text{Y inercept} = p(0) = -2 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 3x^3+2x^2-3x-2 \right) = \lim_{x \to -\infty} 3x^3 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( 3x^3+2x^2-3x-2 \right) = \lim_{x \to \infty} 3x^3 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 9x^2+4x-3 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 0.3964 & x_2 = -0.8409 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0.3964 } \Rightarrow p\left(0.3964\right) = \color{orangered}{ -2.6881 }\\[1 em] \text{for } ~ x & = \color{blue}{ -0.8409 } \Rightarrow p\left(-0.8409\right) = \color{orangered}{ 0.1531 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 0.3964, -2.6881 \right) & \left( -0.8409, 0.1531 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 18x+4 $.
The zero of second derivative is
$$ \begin{matrix}x = -\dfrac{ 2 }{ 9 } \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -\frac{ 2 }{ 9 } } \Rightarrow p\left(-\frac{ 2 }{ 9 }\right) = \color{orangered}{ -\frac{ 308 }{ 243 } }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( -\dfrac{ 2 }{ 9 }, -\dfrac{ 308 }{ 243 } \right)\end{matrix} $$