Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 2x^5-11x^4+19x^3-17x^2+17x-16 = 0 } $
The solution of this equation is:
$$ \begin{matrix}x = 3.1502 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 2x^5-11x^4+19x^3-17x^2+17x-16 } $, so:
$$ \text{Y inercept} = p(0) = -16 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 2x^5-11x^4+19x^3-17x^2+17x-16 \right) = \lim_{x \to -\infty} 2x^5 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( 2x^5-11x^4+19x^3-17x^2+17x-16 \right) = \lim_{x \to \infty} 2x^5 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 10x^4-44x^3+57x^2-34x+17 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 1.3474 & x_2 = 2.6318 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 1.3474 } \Rightarrow p\left(1.3474\right) = \color{orangered}{ -4.8538 }\\[1 em] \text{for } ~ x & = \color{blue}{ 2.6318 } \Rightarrow p\left(2.6318\right) = \color{orangered}{ -17.8617 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 1.3474, -4.8538 \right) & \left( 2.6318, -17.8617 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 40x^3-132x^2+114x-34 $.
The zero of second derivative is
$$ \begin{matrix}x = 2.1649 \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 2.1649 } \Rightarrow p\left(2.1649\right) = \color{orangered}{ -12.6076 }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( 2.1649, -12.6076 \right)\end{matrix} $$