Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 2x^4-3x^3-6x^2+5x+6 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = 2 & x_2 = -1 & x_3 = \dfrac{ 3 }{ 2 } & x_4 = -1 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 2x^4-3x^3-6x^2+5x+6 } $, so:
$$ \text{Y inercept} = p(0) = 6 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 2x^4-3x^3-6x^2+5x+6 \right) = \lim_{x \to -\infty} 2x^4 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( 2x^4-3x^3-6x^2+5x+6 \right) = \lim_{x \to \infty} 2x^4 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 8x^3-9x^2-12x+5 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = -1 & x_2 = 1.7724 & x_3 = 0.3526 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -1 } \Rightarrow p\left(-1\right) = \color{orangered}{ 0 }\\[1 em] \text{for } ~ x & = \color{blue}{ 1.7724 } \Rightarrow p\left(1.7724\right) = \color{orangered}{ -0.9531 }\\[1 em] \text{for } ~ x & = \color{blue}{ 0.3526 } \Rightarrow p\left(0.3526\right) = \color{orangered}{ 6.9164 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( -1, 0 \right) & \left( 1.7724, -0.9531 \right) & \left( 0.3526, 6.9164 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 24x^2-18x-12 $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = 1.1754 & x_2 = -0.4254 \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 1.1754 } \Rightarrow p\left(1.1754\right) = \color{orangered}{ 2.5335 }\\[1 em] \text{for } ~ x & = \color{blue}{ -0.4254 } \Rightarrow p\left(-0.4254\right) = \color{orangered}{ 3.0837 }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 1.1754, 2.5335 \right) & \left( -0.4254, 3.0837 \right)\end{matrix} $$