Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 2n^4+n^3 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}n_1 = 0 & n_2 = -\dfrac{ 1 }{ 2 } \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ n = 0 $ into $ \color{blue}{ p(n) = 2n^4+n^3 } $, so:
$$ \text{Y inercept} = p(0) = 0 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 2n^4+n^3 \right) = \lim_{x \to -\infty} 2n^4 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( 2n^4+n^3 \right) = \lim_{x \to \infty} 2n^4 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(n) $:
$$ p^{\prime} (x) = 8n^3+3n^2 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (n) = 0 $$ $$ \begin{matrix}n_1 = 0 & n_2 = -\dfrac{ 3 }{ 8 } \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(n) $
$$ \begin{aligned} \text{for } ~ n & = \color{blue}{ 0 } \Rightarrow p\left(0\right) = \color{orangered}{ 0 }\\[1 em] \text{for } ~ n & = \color{blue}{ -\frac{ 3 }{ 8 } } \Rightarrow p\left(-\frac{ 3 }{ 8 }\right) = \color{orangered}{ -\frac{ 27 }{ 2048 } }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 0, 0 \right) & \left( -\dfrac{ 3 }{ 8 }, -\dfrac{ 27 }{ 2048 } \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 24n^2+6n $.
The zeros of second derivative are
$$ \begin{matrix}n_1 = 0 & n_2 = -\dfrac{ 1 }{ 4 } \end{matrix} $$Substitute the n values into $ p(n) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ n & = \color{blue}{ 0 } \Rightarrow p\left(0\right) = \color{orangered}{ 0 }\\[1 em] \text{for } ~ n & = \color{blue}{ -\frac{ 1 }{ 4 } } \Rightarrow p\left(-\frac{ 1 }{ 4 }\right) = \color{orangered}{ -\frac{ 1 }{ 128 } }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 0, 0 \right) & \left( -\dfrac{ 1 }{ 4 }, -\dfrac{ 1 }{ 128 } \right)\end{matrix} $$