Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 1476x^3+525x^2+42x+5 = 0 } $
The solution of this equation is:
$$ \begin{matrix}x = -0.2984 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 1476x^3+525x^2+42x+5 } $, so:
$$ \text{Y inercept} = p(0) = 5 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 1476x^3+525x^2+42x+5 \right) = \lim_{x \to -\infty} 1476x^3 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( 1476x^3+525x^2+42x+5 \right) = \lim_{x \to \infty} 1476x^3 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 4428x^2+1050x+42 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = -0.0509 & x_2 = -0.1862 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -0.0509 } \Rightarrow p\left(-0.0509\right) = \color{orangered}{ 4.0277 }\\[1 em] \text{for } ~ x & = \color{blue}{ -0.1862 } \Rightarrow p\left(-0.1862\right) = \color{orangered}{ 5.8531 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( -0.0509, 4.0277 \right) & \left( -0.1862, 5.8531 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 8856x+1050 $.
The zero of second derivative is
$$ \begin{matrix}x = -\dfrac{ 175 }{ 1476 } \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -\frac{ 175 }{ 1476 } } \Rightarrow p\left(-\frac{ 175 }{ 1476 }\right) = \color{orangered}{ \frac{ 5381515 }{ 1089288 } }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( -\dfrac{ 175 }{ 1476 }, \dfrac{ 5381515 }{ 1089288 } \right)\end{matrix} $$