Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ -\frac{1}{5}x^6-\frac{1}{4}x^5+\frac{1}{3}x^4-\frac{1}{2}x^3+x^2-x+2 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = 1.3524 & x_2 = -2.665 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = -\frac{1}{5}x^6-\frac{1}{4}x^5+\frac{1}{3}x^4-\frac{1}{2}x^3+x^2-x+2 } $, so:
$$ \text{Y inercept} = p(0) = 2 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( -\frac{1}{5}x^6-\frac{1}{4}x^5+\frac{1}{3}x^4-\frac{1}{2}x^3+x^2-x+2 \right) = \lim_{x \to -\infty} -\frac{1}{5}x^6 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( -\frac{1}{5}x^6-\frac{1}{4}x^5+\frac{1}{3}x^4-\frac{1}{2}x^3+x^2-x+2 \right) = \lim_{x \to \infty} -\frac{1}{5}x^6 = \color{blue}{ -\infty } $$The graph ends in the lower-right corner.
STEP 4:Find the turning points
To determine the turning point, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = -\frac{6}{5}x^5-\frac{5}{4}x^4+\frac{4}{3}x^3-\frac{3}{2}x^2+2x-1 $$The x coordinate of the turning point is located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x = -2.0877 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinate, substitute the above value into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -2.0877 } \Rightarrow p\left(-2.0877\right) = \color{orangered}{ 12.6835 }\end{aligned} $$So the turning point is:
$$ \begin{matrix} \left( -2.0877, 12.6835 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = -6x^4-5x^3+4x^2-3x+2 $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = 0.5739 & x_2 = -1.5565 \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0.5739 } \Rightarrow p\left(0.5739\right) = \color{orangered}{ 1.6744 }\\[1 em] \text{for } ~ x & = \color{blue}{ -1.5565 } \Rightarrow p\left(-1.5565\right) = \color{orangered}{ 9.2607 }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 0.5739, 1.6744 \right) & \left( -1.5565, 9.2607 \right)\end{matrix} $$