Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ -x^3+2x^2+3x-1 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = 0.2865 & x_2 = -1.1987 & x_3 = 2.9122 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = -x^3+2x^2+3x-1 } $, so:
$$ \text{Y inercept} = p(0) = -1 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( -x^3+2x^2+3x-1 \right) = \lim_{x \to -\infty} -x^3 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( -x^3+2x^2+3x-1 \right) = \lim_{x \to \infty} -x^3 = \color{blue}{ -\infty } $$The graph ends in the lower-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = -3x^2+4x+3 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 1.8685 & x_2 = -0.5352 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 1.8685 } \Rightarrow p\left(1.8685\right) = \color{orangered}{ 5.0646 }\\[1 em] \text{for } ~ x & = \color{blue}{ -0.5352 } \Rightarrow p\left(-0.5352\right) = \color{orangered}{ -1.8794 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 1.8685, 5.0646 \right) & \left( -0.5352, -1.8794 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = -6x+4 $.
The zero of second derivative is
$$ \begin{matrix}x = \dfrac{ 2 }{ 3 } \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ \frac{ 2 }{ 3 } } \Rightarrow p\left(\frac{ 2 }{ 3 }\right) = \color{orangered}{ \frac{ 43 }{ 27 } }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( \dfrac{ 2 }{ 3 }, \dfrac{ 43 }{ 27 } \right)\end{matrix} $$