Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ -114x^3+10474x^2-21058x+2000000 = 0 } $
The solution of this equation is:
$$ \begin{matrix}x = 91.9435 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = -114x^3+10474x^2-21058x+2000000 } $, so:
$$ \text{Y inercept} = p(0) = 2000000 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( -114x^3+10474x^2-21058x+2000000 \right) = \lim_{x \to -\infty} -114x^3 = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( -114x^3+10474x^2-21058x+2000000 \right) = \lim_{x \to \infty} -114x^3 = \color{blue}{ -\infty } $$The graph ends in the lower-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = -342x^2+20948x-21058 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 60.2291 & x_2 = 1.0223 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 60.2291 } \Rightarrow p\left(60.2291\right) = \color{orangered}{ 13819450.2469 }\\[1 em] \text{for } ~ x & = \color{blue}{ 1.0223 } \Rightarrow p\left(1.0223\right) = \color{orangered}{ 1989296.9577 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 60.2291, 13819450.2469 \right) & \left( 1.0223, 1989296.9577 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = -684x+20948 $.
The zero of second derivative is
$$ \begin{matrix}x = \dfrac{ 5237 }{ 171 } \end{matrix} $$Substitute the x value into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ \frac{ 5237 }{ 171 } } \Rightarrow p\left(\frac{ 5237 }{ 171 }\right) = \color{orangered}{ 7904373.6023 }\end{aligned} $$So the inflection point is:
$$ \begin{matrix} \left( \dfrac{ 5237 }{ 171 }, 7904373.6023 \right)\end{matrix} $$