Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ -\cancel{\frac{1}{30}x}-4x-3x+5x+ \cancel{x}+2 = 0 } $
The solution of this equation is:
$$ \begin{matrix}x = \dfrac{ 60 }{ 31 } \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = -\cancel{\frac{1}{30}x}-4x-3x+5x+ \cancel{x}+2 } $, so:
$$ \text{Y inercept} = p(0) = 2 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( -\cancel{\frac{1}{30}x}-4x-3x+5x+ \cancel{x}+2 \right) = \lim_{x \to -\infty} -\frac{1}{30}x = \color{blue}{ \infty } $$The graph starts in the upper-left corner.
$$ \lim_{x \to \infty} \left( -\cancel{\frac{1}{30}x}-4x-3x+5x+ \cancel{x}+2 \right) = \lim_{x \to \infty} -\frac{1}{30}x = \color{blue}{ -\infty } $$The graph ends in the lower-right corner.