Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ -x^4+7x^3-3x^2-3x+3 = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = -0.769 & x_2 = 6.4763 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = -x^4+7x^3-3x^2-3x+3 } $, so:
$$ \text{Y inercept} = p(0) = 3 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( -x^4+7x^3-3x^2-3x+3 \right) = \lim_{x \to -\infty} -x^4 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( -x^4+7x^3-3x^2-3x+3 \right) = \lim_{x \to \infty} -x^4 = \color{blue}{ -\infty } $$The graph ends in the lower-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = -4x^3+21x^2-6x-3 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = -0.2572 & x_2 = 0.5935 & x_3 = 4.9137 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ -0.2572 } \Rightarrow p\left(-0.2572\right) = \color{orangered}{ 3.4497 }\\[1 em] \text{for } ~ x & = \color{blue}{ 0.5935 } \Rightarrow p\left(0.5935\right) = \color{orangered}{ 1.5021 }\\[1 em] \text{for } ~ x & = \color{blue}{ 4.9137 } \Rightarrow p\left(4.9137\right) = \color{orangered}{ 163.3412 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( -0.2572, 3.4497 \right) & \left( 0.5935, 1.5021 \right) & \left( 4.9137, 163.3412 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = -12x^2+42x-6 $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = 3.3508 & x_2 = 0.1492 \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 3.3508 } \Rightarrow p\left(3.3508\right) = \color{orangered}{ 96.5542 }\\[1 em] \text{for } ~ x & = \color{blue}{ 0.1492 } \Rightarrow p\left(0.1492\right) = \color{orangered}{ 2.5083 }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 3.3508, 96.5542 \right) & \left( 0.1492, 2.5083 \right)\end{matrix} $$