Step 1 :
After factoring out $ y $ we have:
$$ y^{3}+5y^{2}-2y = y ( y^{2}+5y-2 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 5 } ~ \text{ and } ~ \color{red}{ c = -2 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 5 } $ and multiply to $ \color{red}{ -2 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -2 }$.
PRODUCT = -2 | |
-1 2 | 1 -2 |
Step 4: Because none of these pairs will give us a sum of $ \color{blue}{ 5 }$, we conclude the polynomial cannot be factored.