Step 1 :
After factoring out $ x^{3} $ we have:
$$ x^{5}+6x^{4}+5x^{3} = x^{3} ( x^{2}+6x+5 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 6 } ~ \text{ and } ~ \color{red}{ c = 5 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 6 } $ and multiply to $ \color{red}{ 5 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 5 }$.
PRODUCT = 5 | |
1 5 | -1 -5 |
Step 4: Find out which pair sums up to $\color{blue}{ b = 6 }$
PRODUCT = 5 and SUM = 6 | |
1 5 | -1 -5 |
Step 5: Put 1 and 5 into placeholders to get factored form.
$$ \begin{aligned} x^{2}+6x+5 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}+6x+5 & = (x + 1)(x + 5) \end{aligned} $$