Step 1 :
Factor out common factor $ \color{blue}{ xy^3 } $:
$$ x^4y^3+xy^3 = xy^3 ( x^3+1 ) $$Step 2 :
To factor $ x^{3}+1 $ we can use sum of cubes formula:
$$ I^3 + II^3 = (I + II) (I^2 - I \cdot II + II^2)$$After putting $ I = x $ and $ II = 1 $ , we have:
$$ x^{3}+1 = ( x+1 ) ( x^{2}-x+1 ) $$