Step 1 :
After factoring out $ x^{2} $ we have:
$$ x^{4}-x^{3}-42x^{2} = x^{2} ( x^{2}-x-42 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -1 } ~ \text{ and } ~ \color{red}{ c = -42 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -1 } $ and multiply to $ \color{red}{ -42 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -42 }$.
PRODUCT = -42 | |
-1 42 | 1 -42 |
-2 21 | 2 -21 |
-3 14 | 3 -14 |
-6 7 | 6 -7 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -1 }$
PRODUCT = -42 and SUM = -1 | |
-1 42 | 1 -42 |
-2 21 | 2 -21 |
-3 14 | 3 -14 |
-6 7 | 6 -7 |
Step 5: Put 6 and -7 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-x-42 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-x-42 & = (x + 6)(x -7) \end{aligned} $$