Step 1 :
After factoring out $ x $ we have:
$$ x^{3}+2x^{2}-48x = x ( x^{2}+2x-48 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 2 } ~ \text{ and } ~ \color{red}{ c = -48 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 2 } $ and multiply to $ \color{red}{ -48 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -48 }$.
PRODUCT = -48 | |
-1 48 | 1 -48 |
-2 24 | 2 -24 |
-3 16 | 3 -16 |
-4 12 | 4 -12 |
-6 8 | 6 -8 |
Step 4: Find out which pair sums up to $\color{blue}{ b = 2 }$
PRODUCT = -48 and SUM = 2 | |
-1 48 | 1 -48 |
-2 24 | 2 -24 |
-3 16 | 3 -16 |
-4 12 | 4 -12 |
-6 8 | 6 -8 |
Step 5: Put -6 and 8 into placeholders to get factored form.
$$ \begin{aligned} x^{2}+2x-48 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}+2x-48 & = (x -6)(x + 8) \end{aligned} $$