Step 1 :
To factor $ x^{3}-216 $ we can use difference of cubes formula:
$$ I^3 - II^3 = (I - II)(I^2 + I \cdot II + II^2) $$After putting $ I = x $ and $ II = 6 $ , we have:
$$ x^{3}-216 = ( x-6 ) ( x^{2}+6x+36 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 6 } ~ \text{ and } ~ \color{red}{ c = 36 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 6 } $ and multiply to $ \color{red}{ 36 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 36 }$.
PRODUCT = 36 | |
1 36 | -1 -36 |
2 18 | -2 -18 |
3 12 | -3 -12 |
4 9 | -4 -9 |
6 6 | -6 -6 |
Step 4: Because none of these pairs will give us a sum of $ \color{blue}{ 6 }$, we conclude the polynomial cannot be factored.