Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 7 } ~ \text{ and } ~ \color{red}{ c = -78 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 7 } $ and multiply to $ \color{red}{ -78 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = -78 }$.
PRODUCT = -78 | |
-1 78 | 1 -78 |
-2 39 | 2 -39 |
-3 26 | 3 -26 |
-6 13 | 6 -13 |
Step 3: Find out which pair sums up to $\color{blue}{ b = 7 }$
PRODUCT = -78 and SUM = 7 | |
-1 78 | 1 -78 |
-2 39 | 2 -39 |
-3 26 | 3 -26 |
-6 13 | 6 -13 |
Step 4: Put -6 and 13 into placeholders to get factored form.
$$ \begin{aligned} x^{2}+7x-78 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}+7x-78 & = (x -6)(x + 13) \end{aligned} $$