Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 4 } ~ \text{ and } ~ \color{red}{ c = -117 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 4 } $ and multiply to $ \color{red}{ -117 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = -117 }$.
PRODUCT = -117 | |
-1 117 | 1 -117 |
-3 39 | 3 -39 |
-9 13 | 9 -13 |
Step 3: Find out which pair sums up to $\color{blue}{ b = 4 }$
PRODUCT = -117 and SUM = 4 | |
-1 117 | 1 -117 |
-3 39 | 3 -39 |
-9 13 | 9 -13 |
Step 4: Put -9 and 13 into placeholders to get factored form.
$$ \begin{aligned} x^{2}+4x-117 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}+4x-117 & = (x -9)(x + 13) \end{aligned} $$