Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 3 } ~ \text{ and } ~ \color{red}{ c = -108 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 3 } $ and multiply to $ \color{red}{ -108 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = -108 }$.
PRODUCT = -108 | |
-1 108 | 1 -108 |
-2 54 | 2 -54 |
-3 36 | 3 -36 |
-4 27 | 4 -27 |
-6 18 | 6 -18 |
-9 12 | 9 -12 |
Step 3: Find out which pair sums up to $\color{blue}{ b = 3 }$
PRODUCT = -108 and SUM = 3 | |
-1 108 | 1 -108 |
-2 54 | 2 -54 |
-3 36 | 3 -36 |
-4 27 | 4 -27 |
-6 18 | 6 -18 |
-9 12 | 9 -12 |
Step 4: Put -9 and 12 into placeholders to get factored form.
$$ \begin{aligned} x^{2}+3x-108 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}+3x-108 & = (x -9)(x + 12) \end{aligned} $$