Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 37 } ~ \text{ and } ~ \color{red}{ c = -650 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 37 } $ and multiply to $ \color{red}{ -650 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = -650 }$.
PRODUCT = -650 | |
-1 650 | 1 -650 |
-2 325 | 2 -325 |
-5 130 | 5 -130 |
-10 65 | 10 -65 |
-13 50 | 13 -50 |
-25 26 | 25 -26 |
Step 3: Find out which pair sums up to $\color{blue}{ b = 37 }$
PRODUCT = -650 and SUM = 37 | |
-1 650 | 1 -650 |
-2 325 | 2 -325 |
-5 130 | 5 -130 |
-10 65 | 10 -65 |
-13 50 | 13 -50 |
-25 26 | 25 -26 |
Step 4: Put -13 and 50 into placeholders to get factored form.
$$ \begin{aligned} x^{2}+37x-650 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}+37x-650 & = (x -13)(x + 50) \end{aligned} $$