It seems that $ x^{2}+2x-180 $ cannot be factored out.
Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 2 } ~ \text{ and } ~ \color{red}{ c = -180 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 2 } $ and multiply to $ \color{red}{ -180 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = -180 }$.
PRODUCT = -180 | |
-1 180 | 1 -180 |
-2 90 | 2 -90 |
-3 60 | 3 -60 |
-4 45 | 4 -45 |
-5 36 | 5 -36 |
-6 30 | 6 -30 |
-9 20 | 9 -20 |
-10 18 | 10 -18 |
-12 15 | 12 -15 |
Step 3: Because none of these pairs will give us a sum of $ \color{blue}{ 2 }$, we conclude the polynomial cannot be factored.