Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -38 } ~ \text{ and } ~ \color{red}{ c = 72 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -38 } $ and multiply to $ \color{red}{ 72 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = 72 }$.
PRODUCT = 72 | |
1 72 | -1 -72 |
2 36 | -2 -36 |
3 24 | -3 -24 |
4 18 | -4 -18 |
6 12 | -6 -12 |
8 9 | -8 -9 |
Step 3: Find out which pair sums up to $\color{blue}{ b = -38 }$
PRODUCT = 72 and SUM = -38 | |
1 72 | -1 -72 |
2 36 | -2 -36 |
3 24 | -3 -24 |
4 18 | -4 -18 |
6 12 | -6 -12 |
8 9 | -8 -9 |
Step 4: Put -2 and -36 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-38x+72 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-38x+72 & = (x -2)(x -36) \end{aligned} $$