It seems that $ x^{2}-2600x+240000 $ cannot be factored out.
Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -2600 } ~ \text{ and } ~ \color{red}{ c = 240000 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -2600 } $ and multiply to $ \color{red}{ 240000 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = 240000 }$.
PRODUCT = 240000 | |
1 240000 | -1 -240000 |
2 120000 | -2 -120000 |
3 80000 | -3 -80000 |
4 60000 | -4 -60000 |
5 48000 | -5 -48000 |
6 40000 | -6 -40000 |
8 30000 | -8 -30000 |
10 24000 | -10 -24000 |
12 20000 | -12 -20000 |
15 16000 | -15 -16000 |
16 15000 | -16 -15000 |
20 12000 | -20 -12000 |
24 10000 | -24 -10000 |
25 9600 | -25 -9600 |
30 8000 | -30 -8000 |
32 7500 | -32 -7500 |
40 6000 | -40 -6000 |
48 5000 | -48 -5000 |
50 4800 | -50 -4800 |
60 4000 | -60 -4000 |
64 3750 | -64 -3750 |
75 3200 | -75 -3200 |
80 3000 | -80 -3000 |
96 2500 | -96 -2500 |
100 2400 | -100 -2400 |
120 2000 | -120 -2000 |
125 1920 | -125 -1920 |
128 1875 | -128 -1875 |
150 1600 | -150 -1600 |
160 1500 | -160 -1500 |
192 1250 | -192 -1250 |
200 1200 | -200 -1200 |
240 1000 | -240 -1000 |
250 960 | -250 -960 |
300 800 | -300 -800 |
320 750 | -320 -750 |
375 640 | -375 -640 |
384 625 | -384 -625 |
400 600 | -400 -600 |
480 500 | -480 -500 |
Step 3: Because none of these pairs will give us a sum of $ \color{blue}{ -2600 }$, we conclude the polynomial cannot be factored.