Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -23 } ~ \text{ and } ~ \color{red}{ c = -50 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -23 } $ and multiply to $ \color{red}{ -50 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = -50 }$.
PRODUCT = -50 | |
-1 50 | 1 -50 |
-2 25 | 2 -25 |
-5 10 | 5 -10 |
Step 3: Find out which pair sums up to $\color{blue}{ b = -23 }$
PRODUCT = -50 and SUM = -23 | |
-1 50 | 1 -50 |
-2 25 | 2 -25 |
-5 10 | 5 -10 |
Step 4: Put 2 and -25 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-23x-50 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-23x-50 & = (x + 2)(x -25) \end{aligned} $$