Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -16 } ~ \text{ and } ~ \color{red}{ c = 63 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -16 } $ and multiply to $ \color{red}{ 63 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = 63 }$.
PRODUCT = 63 | |
1 63 | -1 -63 |
3 21 | -3 -21 |
7 9 | -7 -9 |
Step 3: Find out which pair sums up to $\color{blue}{ b = -16 }$
PRODUCT = 63 and SUM = -16 | |
1 63 | -1 -63 |
3 21 | -3 -21 |
7 9 | -7 -9 |
Step 4: Put -7 and -9 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-16x+63 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-16x+63 & = (x -7)(x -9) \end{aligned} $$