Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -12 } ~ \text{ and } ~ \color{red}{ c = -364 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -12 } $ and multiply to $ \color{red}{ -364 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = -364 }$.
PRODUCT = -364 | |
-1 364 | 1 -364 |
-2 182 | 2 -182 |
-4 91 | 4 -91 |
-7 52 | 7 -52 |
-13 28 | 13 -28 |
-14 26 | 14 -26 |
Step 3: Find out which pair sums up to $\color{blue}{ b = -12 }$
PRODUCT = -364 and SUM = -12 | |
-1 364 | 1 -364 |
-2 182 | 2 -182 |
-4 91 | 4 -91 |
-7 52 | 7 -52 |
-13 28 | 13 -28 |
-14 26 | 14 -26 |
Step 4: Put 14 and -26 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-12x-364 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-12x-364 & = (x + 14)(x -26) \end{aligned} $$