Step 1 :
Rewrite $ w^12-z^12 $ as:
$$ \color{blue}{ w^12-z^12 = (w^6)^2 - (z^6)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = w^6 $ and $ II = z^6 $ , we have:
$$ w^12-z^12 = (w^6)^2 - (z^6)^2 = ( w^6-z^6 ) ( w^6+z^6 ) $$Step 2 :
To factor $ w^{6}+z^{6} $ we can use sum of cubes formula:
$$ I^3 + II^3 = (I + II) (I^2 - I \cdot II + II^2)$$After putting $ I = w^2 $ and $ II = z^2 $ , we have:
$$ w^{6}+z^{6} = ( w^{2}+z^{2} ) ( w^{4}-w^{2}z^{2}+z^{4} ) $$Step 3 :
Rewrite $ w^6-z^6 $ as:
$$ \color{blue}{ w^6-z^6 = (w^3)^2 - (z^3)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = w^3 $ and $ II = z^3 $ , we have:
$$ w^6-z^6 = (w^3)^2 - (z^3)^2 = ( w^3-z^3 ) ( w^3+z^3 ) $$Step 4 :
To factor $ w^{3}+z^{3} $ we can use sum of cubes formula:
$$ I^3 + II^3 = (I + II) (I^2 - I \cdot II + II^2)$$After putting $ I = w $ and $ II = z $ , we have:
$$ w^{3}+z^{3} = ( w+z ) ( w^{2}-wz+z^{2} ) $$Step 5 :
To factor $ w^{3}-z^{3} $ we can use difference of cubes formula:
$$ I^3 - II^3 = (I - II) (I^2 + I \cdot II + II^2) $$After putting $ I = w $ and $ II = z $ , we have:
$$ w^{3}-z^{3} = ( w-z ) ( w^{2}+wz+z^{2} ) $$