To factor $ v^{3}-2v^{2}+7v-14 $ we can use factoring by grouping:
Group $ \color{blue}{ x^{3} }$ with $ \color{blue}{ -2x^{2} }$ and $ \color{red}{ 7x }$ with $ \color{red}{ -14 }$ then factor each group.
$$ \begin{aligned} v^{3}-2v^{2}+7v-14 = ( \color{blue}{ x^{3}-2x^{2} } ) + ( \color{red}{ 7x-14 }) &= \\ &= \color{blue}{ x^{2}( x-2 )} + \color{red}{ 7( x-2 ) } = \\ &= (x^{2}+7)(x-2) \end{aligned} $$