Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 21 } ~ \text{ and } ~ \color{red}{ c = 108 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 21 } $ and multiply to $ \color{red}{ 108 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = 108 }$.
PRODUCT = 108 | |
1 108 | -1 -108 |
2 54 | -2 -54 |
3 36 | -3 -36 |
4 27 | -4 -27 |
6 18 | -6 -18 |
9 12 | -9 -12 |
Step 3: Find out which pair sums up to $\color{blue}{ b = 21 }$
PRODUCT = 108 and SUM = 21 | |
1 108 | -1 -108 |
2 54 | -2 -54 |
3 36 | -3 -36 |
4 27 | -4 -27 |
6 18 | -6 -18 |
9 12 | -9 -12 |
Step 4: Put 9 and 12 into placeholders to get factored form.
$$ \begin{aligned} r^{2}+21r+108 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ r^{2}+21r+108 & = (x + 9)(x + 12) \end{aligned} $$