Step 1 :
Factor out common factor $ \color{blue}{ p } $:
$$ p^4+pq^3 = p ( p^3+q^3 ) $$Step 2 :
To factor $ p^{3}+q^{3} $ we can use sum of cubes formula:
$$ I^3 + II^3 = (I + II) (I^2 - I \cdot II + II^2)$$After putting $ I = p $ and $ II = q $ , we have:
$$ p^{3}+q^{3} = ( p+q ) ( p^{2}-pq+q^{2} ) $$