Rewrite $ m^8-9n^10 $ as:
$$ \color{blue}{ m^8-9n^10 = (m^4)^2 - (3n^5)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = m^4 $ and $ II = 3n^5 $ , we have:
$$ m^8-9n^10 = (m^4)^2 - (3n^5)^2 = ( m^4-3n^5 ) ( m^4+3n^5 ) $$