Step 1 :
Rewrite $ m^6-n^6 $ as:
$$ \color{blue}{ m^6-n^6 = (m^3)^2 - (n^3)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = m^3 $ and $ II = n^3 $ , we have:
$$ m^6-n^6 = (m^3)^2 - (n^3)^2 = ( m^3-n^3 ) ( m^3+n^3 ) $$Step 2 :
To factor $ m^{3}+n^{3} $ we can use sum of cubes formula:
$$ I^3 + II^3 = (I + II) (I^2 - I \cdot II + II^2)$$After putting $ I = m $ and $ II = n $ , we have:
$$ m^{3}+n^{3} = ( m+n ) ( m^{2}-mn+n^{2} ) $$Step 3 :
To factor $ m^{3}-n^{3} $ we can use difference of cubes formula:
$$ I^3 - II^3 = (I - II) (I^2 + I \cdot II + II^2) $$After putting $ I = m $ and $ II = n $ , we have:
$$ m^{3}-n^{3} = ( m-n ) ( m^{2}+mn+n^{2} ) $$