Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -63 } ~ \text{ and } ~ \color{red}{ c = 486 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -63 } $ and multiply to $ \color{red}{ 486 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = 486 }$.
PRODUCT = 486 | |
1 486 | -1 -486 |
2 243 | -2 -243 |
3 162 | -3 -162 |
6 81 | -6 -81 |
9 54 | -9 -54 |
18 27 | -18 -27 |
Step 3: Find out which pair sums up to $\color{blue}{ b = -63 }$
PRODUCT = 486 and SUM = -63 | |
1 486 | -1 -486 |
2 243 | -2 -243 |
3 162 | -3 -162 |
6 81 | -6 -81 |
9 54 | -9 -54 |
18 27 | -18 -27 |
Step 4: Put -9 and -54 into placeholders to get factored form.
$$ \begin{aligned} m^{2}-63m+486 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ m^{2}-63m+486 & = (x -9)(x -54) \end{aligned} $$