Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -12 } ~ \text{ and } ~ \color{red}{ c = 32 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -12 } $ and multiply to $ \color{red}{ 32 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = 32 }$.
PRODUCT = 32 | |
1 32 | -1 -32 |
2 16 | -2 -16 |
4 8 | -4 -8 |
Step 3: Find out which pair sums up to $\color{blue}{ b = -12 }$
PRODUCT = 32 and SUM = -12 | |
1 32 | -1 -32 |
2 16 | -2 -16 |
4 8 | -4 -8 |
Step 4: Put -4 and -8 into placeholders to get factored form.
$$ \begin{aligned} c^{2}-12c+32 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ c^{2}-12c+32 & = (x -4)(x -8) \end{aligned} $$