Step 1 :
Rewrite $ c^10-1024m^10 $ as:
$$ \color{blue}{ c^10-1024m^10 = (c^5)^2 - (32m^5)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = c^5 $ and $ II = 32m^5 $ , we have:
$$ c^10-1024m^10 = (c^5)^2 - (32m^5)^2 = ( c^5-32m^5 ) ( c^5+32m^5 ) $$Step 2 :
To factor $ c^{5}+32m^{5} $ we can use formula:
$$ I^5 + II^5 = (I + II) (I^4 - I^3 \cdot II + I^2 \cdot II^2 - I \cdot II^3 +II^4) $$After putting $ I = c $ and $ II = 2m $ , we have:
$$ c^{5}+32m^{5} = ( c+2m ) ( c^{4}-2c^{3}m+4c^{2}m^{2}-8cm^{3}+16m^{4} ) $$Step 3 :
To factor $ c^{5}-32m^{5} $ we can use formula:
$$ I^5 - II^5 = (I - II) (I^4 + I^3 \cdot II + I^2 \cdot II^2 + I \cdot II^3 +II^4) $$After putting $ I = c $ and $ II = 2m $ , we have:
$$ c^{5}-32m^{5} = ( c-2m ) ( c^{4}+2c^{3}m+4c^{2}m^{2}+8cm^{3}+16m^{4} ) $$