Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -19 } ~ \text{ and } ~ \color{red}{ c = 90 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -19 } $ and multiply to $ \color{red}{ 90 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = 90 }$.
PRODUCT = 90 | |
1 90 | -1 -90 |
2 45 | -2 -45 |
3 30 | -3 -30 |
5 18 | -5 -18 |
6 15 | -6 -15 |
9 10 | -9 -10 |
Step 3: Find out which pair sums up to $\color{blue}{ b = -19 }$
PRODUCT = 90 and SUM = -19 | |
1 90 | -1 -90 |
2 45 | -2 -45 |
3 30 | -3 -30 |
5 18 | -5 -18 |
6 15 | -6 -15 |
9 10 | -9 -10 |
Step 4: Put -9 and -10 into placeholders to get factored form.
$$ \begin{aligned} b^{2}-19b+90 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ b^{2}-19b+90 & = (x -9)(x -10) \end{aligned} $$